Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.466
Filtrar
1.
Crit Rev Immunol ; 44(5): 51-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618728

RESUMO

To explore the protective effect and mechanism of mild hypothermia on lung tissue damage after cardiopulmonary resuscitation in pigs. In this experiment, we electrically stimulated 16 pigs (30 ± 2 kg) for 10 min to cause ventricular fibrillation. The successfully resuscitated animals were randomly divided into two groups, a mild hypothermia group and a control group. We took arterial blood 0.5, 1, 3, and 6 h after ROSC recovery in the two groups of animals for blood gas analysis. We observed the structural changes of lung tissue under an electron microscope and calculate the wet weight/dry weight (W/D) ratio. We quantitatively analyzed the expression differences of representative inflammatory factors [interleukin-6 (IL-6) and tumor necrosis factor-alpha TNF-α)] through the ELISA test. We detected the expression levels of Bax, Bcl-2, and Caspase-3 proteins in lung tissues by Western blot. After 3 h and 6 h of spontaneous circulation was restored, compared with the control group, PaO2/FiO2 decreased significantly (P < 0.05). In addition, the pathological changes, lung W/D and lung MDA of the mild hypothermia group were better than those of the control group. The levels of IL-6 and TNF-α in the lung tissue of the mild hypothermia group were significantly lower than those of the control group (P < 0.05). The content of Caspase-3 and Bax in the mild hypothermia group was significantly lower than that of the control group. Our experiments have shown that mild hypothermia can reduce lung tissue damage after cardiopulmonary resuscitation.


Assuntos
Reanimação Cardiopulmonar , Hipotermia , Lesão Pulmonar , Humanos , Animais , Suínos , Lesão Pulmonar/etiologia , Caspase 3 , Interleucina-6 , Fator de Necrose Tumoral alfa , Proteína X Associada a bcl-2
2.
Stem Cell Res Ther ; 15(1): 80, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486338

RESUMO

BACKGROUND: Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS: Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS: Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION: This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperóxia , Células-Tronco Pluripotentes Induzidas , Lesão Pulmonar , Animais , Camundongos , Humanos , Recém-Nascido , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Animais Recém-Nascidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lesão Pulmonar/terapia , Lesão Pulmonar/etiologia , Antioxidantes/metabolismo , Proteômica , Recém-Nascido Prematuro , Pulmão/patologia , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo
3.
Transplant Proc ; 56(2): 369-379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320873

RESUMO

BACKGROUND: Adipose-derived stem cells (ADSCs) are well-recognized for their remarkable ability to suppress ischemia-reperfusion lung injury (IRLI). The primary objective of this investigation was to elucidate the underlying mechanism through which ADSCs exert protective effects against IRLI. METHODS: A warm hilar occlusion model in C57BL6J mice was used. Hilar occlusion was achieved for 1 hour (ischemic), and after 1 hour the occlusion was released (reperfusion) to recover for 3 hours. RNA sequencing, the physiological function, pathway activation, and expression of inflammatory cytokines were evaluated. RESULTS: Lung gas exchange and pulmonary edema were significantly improved in the IRLI/ADSCs group compared with the IRLI group. RNA sequencing results suggested that the peroxisome proliferator-activated receptor gamma (PPARγ)/nuclear factor-kappa B (NF-κB) pathway was involved in the effect of the ADSCs. Administration of a PPARγ antagonist in the IRLI/ADSC group resulted in the deterioration of the physiological function. Furthermore, the PPARγ protein expression level decreased, the NF-κB protein expression level increased, and inflammatory cytokine parameters from lung tissue and blood sample worsened in the PPARγ antagonist-administered group. CONCLUSION: Administration of ADSCs exerted a significant protective effect against IRLI in mice, and the effect is attributed to the activation of the PPARγ/NF-κB pathway.


Assuntos
Lesão Pulmonar , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Camundongos , Citocinas/metabolismo , Pulmão , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo
4.
Free Radic Biol Med ; 215: 112-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336101

RESUMO

Murine sickle cell disease (SCD) results in damage to multiple organs, likely mediated first by vasculopathy. While the mechanisms inducing vascular damage remain to be determined, nitric oxide bioavailability and sterile inflammation are both considered to play major roles in vasculopathy. Here, we investigate the effects of high mobility group box-1 (HMGB1), a pro-inflammatory damage-associated molecular pattern (DAMP) molecule on endothelial-dependent vasodilation and lung morphometrics, a structural index of damage in sickle (SS) mice. SS mice were treated with either phosphate-buffered saline (PBS), hE-HMGB1-BP, an hE dual-domain peptide that binds and removes HMGB1 from the circulation via the liver, 1-[4-(aminocarbonyl)-2-methylphenyl]-5-[4-(1H-imidazol-1-yl)phenyl]-1H-pyrrole-2-propanoic acid (N6022) or N-acetyl-lysyltyrosylcysteine amide (KYC) for three weeks. Human umbilical vein endothelial cells (HUVEC) were treated with recombinant HMGB1 (r-HMGB1), which increases S-nitrosoglutathione reductase (GSNOR) expression by ∼80%, demonstrating a direct effect of HMGB1 to increase GSNOR. Treatment of SS mice with hE-HMGB1-BP reduced plasma HMGB1 in SS mice to control levels and reduced GSNOR expression in facialis arteries isolated from SS mice by ∼20%. These changes were associated with improved endothelial-dependent vasodilation. Treatment of SS mice with N6022 also improved vasodilation in SS mice suggesting that targeting GSNOR also improves vasodilation. SCD decreased protein nitrosothiols (SNOs) and radial alveolar counts (RAC) and increased GSNOR expression and mean linear intercepts (MLI) in lungs from SS mice. The marked changes in pulmonary morphometrics and GSNOR expression throughout the lung parenchyma in SS mice were improved by treating with either hE-HMGB1-BP or KYC. These data demonstrate that murine SCD induces vasculopathy and chronic lung disease by an HMGB1- and GSNOR-dependent mechanism and suggest that HMGB1 and GSNOR might be effective therapeutic targets for reducing vasculopathy and chronic lung disease in humans with SCD.


Assuntos
Anemia Falciforme , Benzamidas , Proteína HMGB1 , Pneumopatias , Lesão Pulmonar , Pirróis , Doenças Vasculares , Humanos , Animais , Camundongos , Lesão Pulmonar/etiologia , Proteína HMGB1/genética , Células Endoteliais/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Inflamação , Doenças Vasculares/etiologia
5.
Exp Lung Res ; 50(1): 25-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419581

RESUMO

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Hiperóxia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/metabolismo
6.
Immun Inflamm Dis ; 12(2): e1175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415919

RESUMO

BACKGROUND: Radiation-induced lung injury (RILI) is a common consequence of thoracic radiation therapy that lacks effective preventative and treatment strategies. Dihydroartemisinin (DHA), a derivative of artemisinin, affects oxidative stress, immunomodulation, and inflammation. It is uncertain whether DHA reduces RILI. In this work, we investigated the specific mechanisms of action of DHA in RILI. METHODS: Twenty-four C57BL/6J mice were randomly divided into four groups of six mice each: Control group, irradiation (IR) group, IR + DHA group, and IR + DHA + Brusatol group. The IR group received no interventions along with radiation treatment. Mice were killed 30 days after the irradiation. Morphologic and pathologic changes in lung tissue were observed with hematoxylin and eosin staining. Detection of hydroxyproline levels for assessing the extent of pulmonary fibrosis. Tumor necrosis factor α (TNF-α), transforming growth factor-ß (TGF-ß), glutathione peroxidase (GPX4), Nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in lung tissues were detected. In addition, mitochondrial ultrastructural changes in lung tissues were also observed, and the glutathione (GSH) content in lung tissues was assessed. RESULTS: DHA attenuated radiation-induced pathological lung injury and hydroxyproline levels. Additionally, it decreased TNF-α and TGF-ß after irradiation. DHA may additionally stimulate the Nrf2/HO-1 pathway. DHA upregulated GPX4 and GSH levels and inhibited cellular ferroptosis. Brusatol reversed the inhibitory effect of DHA on ferroptosis and its protective effect on RILI. CONCLUSION: DHA modulated the Nrf2/HO-1 pathway to prevent cellular ferroptosis, which reduced RILI. Therefore, DHA could be a potential drug for the treatment of RILI.


Assuntos
Artemisininas , Ferroptose , Lesão Pulmonar , Quassinas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Fator 2 Relacionado a NF-E2 , Heme Oxigenase-1 , Hidroxiprolina , Fator de Necrose Tumoral alfa , Pulmão , Fator de Crescimento Transformador beta
7.
Sci Rep ; 14(1): 3758, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355768

RESUMO

Stereotactic ablative radiotherapy (SABR) is a highly effective treatment for patients with early-stage lung cancer who are inoperable. However, SABR causes benign radiation-induced lung injury (RILI) which appears as lesion growth on follow-up CT scans. This triggers the standard definition of progressive disease, yet cancer recurrence is not usually present, and distinguishing RILI from recurrence when a lesion appears to grow in size is critical but challenging. In this study, we developed a tool to do this using scans with apparent lesion growth after SABR from 68 patients. We performed bootstrapped experiments using radiomics and explored the use of multiple regions of interest (ROIs). The best model had an area under the receiver operating characteristic curve of 0.66 and used a sphere with a diameter equal to the lesion's longest axial measurement as the ROI. We also investigated the effect of using inter-feature and volume correlation filters and found that the former was detrimental to performance and that the latter had no effect. We also found that the radiomics features ranked as highly important by the model were significantly correlated with outcomes. These findings represent a key step in developing a tool that can help determine who would benefit from follow-up invasive interventions when a SABR-treated lesion increases in size, which could help provide better treatment for patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lesão Pulmonar , Neoplasias Pulmonares , Lesões por Radiação , Radiocirurgia , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Critérios de Avaliação de Resposta em Tumores Sólidos , 60570 , Recidiva Local de Neoplasia/patologia , Lesões por Radiação/etiologia , Tomografia Computadorizada por Raios X , Radiocirurgia/efeitos adversos
8.
Radiology ; 310(1): e231643, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193836

RESUMO

With the COVID-19 pandemic having lasted more than 3 years, concerns are growing about prolonged symptoms and respiratory complications in COVID-19 survivors, collectively termed post-COVID-19 condition (PCC). Up to 50% of patients have residual symptoms and physiologic impairment, particularly dyspnea and reduced diffusion capacity. Studies have also shown that 24%-54% of patients hospitalized during the 1st year of the pandemic exhibit radiologic abnormalities, such as ground-glass opacity, reticular opacity, bronchial dilatation, and air trapping, when imaged more than 1 year after infection. In patients with persistent respiratory symptoms but normal results at chest CT, dual-energy contrast-enhanced CT, xenon 129 MRI, and low-field-strength MRI were reported to show abnormal ventilation and/or perfusion, suggesting that some lung injury may not be detectable with standard CT. Histologic patterns in post-COVID-19 lung disease include fibrosis, organizing pneumonia, and vascular abnormality, indicating that different pathologic mechanisms may contribute to PCC. Therefore, a comprehensive imaging approach is necessary to evaluate and diagnose patients with persistent post-COVID-19 symptoms. This review will focus on the long-term findings of clinical and radiologic abnormalities and describe histopathologic perspectives. It also addresses advanced imaging techniques and deep learning approaches that can be applied to COVID-19 survivors. This field remains an active area of research, and further follow-up studies are warranted for a better understanding of the chronic stage of the disease and developing a multidisciplinary approach for patient management.


Assuntos
COVID-19 , Lesão Pulmonar , Humanos , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , COVID-19/complicações , COVID-19/diagnóstico por imagem , Pandemias , Síndrome Pós-COVID-19 Aguda , Brônquios
9.
Radiother Oncol ; 192: 110106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253201

RESUMO

BACKGROUND AND PURPOSE: Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation. MATERIALS AND METHODS: Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model. RESULTS: Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96). CONCLUSIONS: This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.


Assuntos
Lesão Pulmonar , Neoplasias Pulmonares , Lesões por Radiação , Feminino , Animais , Camundongos , Neoplasias Pulmonares/patologia , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , 60570 , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Pulmão/diagnóstico por imagem , Pulmão/patologia , Lesões por Radiação/patologia , Biomarcadores , Fibrose
10.
J Xray Sci Technol ; 32(2): 415-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189733

RESUMO

OBJECTIVE: Try to create a dose gradient function (DGF) and test its effectiveness in reducing radiation induced lung injury in breast cancer radiotherapy. MATERIALS AND METHODS: Radiotherapy plans of 30 patients after breast-conserving surgery were included in the study. The dose gradient function was defined as DGH=VDVp3, then the area under the DGF curve of each plan was calculated in rectangular coordinate system, and the minimum area was used as the trigger factor, and other plans were triggered to optimize for area reduction. The dosimetric parameters of target area and organs at risk in 30 cases before and after re-optimization were compared. RESULTS: On the premise of ensuring that the target dose met the clinical requirements, the trigger factor obtained based on DGF could further reduce the V5, V10, V20, V30 and mean lung dose (MLD) of the ipsilateral lung in breast cancer radiotherapy, P < 0.01. And the D2cc and mean heart dose (MHD) of the heart were also reduced, P < 0.01. Besides, the NTCPs of the ipsilateral lung and the heart were also reduced, P < 0.01. CONCLUSION: The trigger factor obtained based on DGF is efficient in reducing radiation induced lung injury in breast cancer radiotherapy.


Assuntos
Neoplasias da Mama , Lesão Pulmonar , Lesões por Radiação , Radioterapia de Intensidade Modulada , Humanos , Feminino , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Mama/radioterapia , Pulmão , Lesões por Radiação/prevenção & controle
11.
Int J Radiat Oncol Biol Phys ; 118(3): 639-649, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924986

RESUMO

Radiation-induced lung injury (RILI) is one of the main dose-limiting toxicities in radiation therapy (RT) for lung cancer. Approximately 10% to 20% of patients show signs of RILI of variable severity. The reason for the wide range of RILI severity and the mechanisms underlying its development are only partially understood. A number of clinical risk factors have been identified that can aid in clinical decision making. Technological advancements in RT and the use of strict organ-at-risk dose constraints have helped to reduce RILI. Predicting patients at risk for RILI may be further improved with a combination of cytokine assessments, γH2AX-assays in leukocytes, or epigenetic markers. A complicating factor is the lack of an objective definition of RILI. Tools such as computed tomography densitometry, fluorodeoxyglucose-positron emission tomography uptake, changes in lung function measurements, and exhaled breath analysis can be implemented to better define and quantify RILI. This can aid in the search for new biomarkers, which can be accelerated by omics techniques, single-cell RNA sequencing, mass cytometry, and advances in patient-specific in vitro cell culture models. An objective quantification of RILI combined with these novel techniques can aid in the development of biomarkers to better predict patients at risk and allow personalized treatment decisions.


Assuntos
Lesão Pulmonar , Neoplasias Pulmonares , Lesões por Radiação , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/complicações , Lesão Pulmonar/etiologia , Pulmão/diagnóstico por imagem , Lesões por Radiação/diagnóstico , Lesões por Radiação/complicações , Biomarcadores
12.
Int Immunopharmacol ; 126: 111263, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000232

RESUMO

Radiation therapy is one of the primary treatments for thoracic malignancies, with radiation-induced lung injury (RILI) emerging as its most prevalent complication. RILI encompasses early-stage radiation pneumonitis (RP) and the subsequent development of radiation pulmonary fibrosis (RPF). During radiation treatment, not only are tumor cells targeted, but normal tissue cells, including alveolar epithelial cells and vascular endothelial cells, also sustain damage. Within the lungs, ionizing radiation boosts the intracellular levels of reactive oxygen species across various cell types. This elevation precipitates the release of cytokines and chemokines, coupled with the infiltration of inflammatory cells, culminating in the onset of RP. This pulmonary inflammatory response can persist, spanning a duration from several months to years, ultimately progressing to RPF. This review aims to explore the alterations in cytokine and chemokine release and the influx of immune cells post-ionizing radiation exposure in the lungs, offering insights for the prevention and management of RILI.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Pneumonite por Radiação , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/metabolismo , Citocinas , Células Endoteliais/metabolismo , Pulmão/patologia , Lesões por Radiação/terapia , Lesões por Radiação/complicações , Pneumonite por Radiação/prevenção & controle , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/metabolismo , Quimiocinas , Fibrose Pulmonar/patologia
13.
Eur J Nucl Med Mol Imaging ; 51(4): 1109-1120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38030744

RESUMO

PURPOSE: Radiation-induced lung injury (RILI) is a severe side effect of radiotherapy (RT) for thoracic malignancies and we currently lack established methods for the early detection of RILI. In this study, we synthesized a new tracer, [18F]AlF-NOTA-QHY-04, targeting C-X-C-chemokine-receptor-type-4 (CXCR4) and investigated its feasibility to detect RILI. METHODS: An RILI rat model was constructed and scanned with [18F]AlF-NOTA-QHY-04 PET/CT and [18F]FDG PET/CT periodically after RT. Dynamic, blocking, autoradiography, and histopathological studies were performed on the day of peak uptake. Fourteen patients with radiation pneumonia, developed during or after thoracic RT, were subjected to PET scan using [18F]AlF-NOTA-QHY-04. RESULTS: The yield of [18F]AlF-NOTA-QHY-04 was 28.5-43.2%, and the specific activity was 27-33 GBq/µmol. [18F]AlF-NOTA-QHY-04 was mainly excreted through the kidney. Significant increased [18F]AlF-NOTA-QHY-04 uptake in the irradiated lung compared with that in the normal lung in the RILI model was observed on day 6 post-RT and peaked on day 14 post-RT, whereas no apparent uptake of [18F]FDG was shown on days 7 and 15 post-RT. MicroCT imaging did not show pneumonia until 42 days post-RT. Significant intense [18F]AlF-NOTA-QHY-04 uptake was confirmed by autoradiography. Immunofluorescence staining demonstrated expression of CXCR4 was significantly increased in the irradiated lung tissue, which correlated with results obtained from hematoxylin-eosin and Masson's trichrome staining. In 14 patients with radiation pneumonia, maximum standardized uptake values (SUVmax) were significantly higher in the irradiated lung compared with those in the normal lung. SUVmax of patients with grade 2 RILI was significantly higher than that of patients with grade 1 RILI. CONCLUSION: This study indicated that [18F]AlF-NOTA-QHY-04 PET/CT imaging can detect RILI non-invasively and earlier than [18F]FDG PET/CT in a rat model. Clinical studies verified its feasibility, suggesting the clinical potential of [18F]AlF-NOTA-QHY-04 as a PET/CT tracer for early monitoring of RILI.


Assuntos
Lesão Pulmonar , Lesões por Radiação , Pneumonite por Radiação , Humanos , Ratos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Tomografia por Emissão de Pósitrons/métodos , Pulmão/diagnóstico por imagem , Receptores CXCR4
14.
Radiother Oncol ; 192: 110053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104782

RESUMO

BACKGROUND AND PURPOSE: This study aimed to investigate the predictive factors of severe radiation-induced lung injury (RILI) in patients with lung cancer and coexisting interstitial lung disease (ILD) undergoing conventionally fractionated thoracic radiotherapy. MATERIALS AND METHODS: The study includes consecutive patients treated with thoracic radiotherapy for lung cancer at two tertiary centers between 2010 and 2021. RILI severity was graded using the National Cancer Institute Common Terminology Criteria version 5.0, with severe RILI defined as toxicity grade ≥4, and symptomatic RILI as grade ≥2. The absolute neutrophil count (ANC), absolute lymphocyte count (ALC), and C-reactive protein were collected within 4 weeks before starting radiotherapy. Neutrophil-lymphocyte ratios (NLR) were calculated as ANC/ALC. The median follow-up was 9 (range, 6-114) months. RESULTS: Among 54 patients, 22 (40.7 %) had severe RILI. On multivariate logistic regression analysis, high pretreatment ANC (p = 0.030, OR = 4.313), pretreatment NLR (p = 0.007, OR = 5.784), and ILD severity (p = 0.027, OR = 2.416) were significant predictors of severe RILI. Dosimetric factors were not associated with severe RP. Overall survival was significantly worse for patients with severe RILI than those without, with 1-year cumulative overall survival rates of 7.4 % and 62.8 %, respectively. CONCLUSION: Pretreatment blood NLR, ANC, and ILD severity were associated with severe RILI. Overall survival was dismal for patients with severe RILI.


Assuntos
Doenças Pulmonares Intersticiais , Lesão Pulmonar , Neoplasias Pulmonares , Lesões por Radiação , Pneumonite por Radiação , Humanos , Lesão Pulmonar/etiologia , Pneumonite por Radiação/etiologia , Pulmão , Doenças Pulmonares Intersticiais/complicações , Lesões por Radiação/complicações , Estudos Retrospectivos
15.
Sci Rep ; 13(1): 22042, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086847

RESUMO

This study aims to develop a trigger operator based on the Overlap Volume Histogram (OVH) and examined its effectiveness in enhancing plan quality to minimize radiation-induced lung injury in postoperative radiotherapy for breast cancer. This trigger operator was applied for plan re-optimization to the previous Volumetric Modulated Arc Therapy (VMAT) plans of 16 left breast conserving surgery cases. These cases were categorized into a Contiguous Group (CG) and a Separated Group (SG) based on the relative position between the target and the Left-Lung (L-Lung). We investigated the changes in Vx, mean dose, and Normal Tissue Complication Probability (NTCP) values of organs-at-risk (OARs) before and after using the trigger operator. The Pairwise Sample T test was employed to evaluate the differences in indices between the two groups before and after optimizations. The trigger operator effectively initiated plan re-optimization. The values of V5, V10, V20, V30, and V40 of the L-Lung, as well as the mean dose of the heart, all decreased after re-optimization. The Pairwise Sample T test results showed statistically significant differences in the V20, V30, and V40 of the L-Lung in the CG (P < 0.01), and in the V5, V10, V20, V30, and V40 of the L-Lung in the SG (P < 0.01). Our findings suggest that the proposed trigger operator can improve plan quality, thereby reducing radiation-induced lung injury in postoperative radiotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Lesão Pulmonar , Lesões por Radiação , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Pulmão , Órgãos em Risco , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle
16.
Ter Arkh ; 95(7): 591-596, 2023 Sep 29.
Artigo em Russo | MEDLINE | ID: mdl-38159011

RESUMO

Vaping, i.e. the use of electronic nicotine/other substances delivery systems, increases a risk of vaping-associated lung injury. The review describes clinical manifestation, methods of diagnosis and diagnostic criteria, treatment of patients with this disease as well as risk stratification of vapers and approaches to their management based on Worchester classification and clinical guidance. The pathogenetic mechanisms of vaping-associated lung injury have been analyzed.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Humanos , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Vaping/efeitos adversos , Tomografia Computadorizada por Raios X
17.
Disaster Med Public Health Prep ; 17: e553, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848400

RESUMO

Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.


Assuntos
Lesão Pulmonar , Humanos , Inflamação , Irritantes/toxicidade , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Mostardeira , Fator de Necrose Tumoral alfa/metabolismo
18.
Nat Commun ; 14(1): 6506, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845224

RESUMO

Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Lesões por Radiação , Animais , Humanos , Lesão Pulmonar/etiologia , Pulmão/efeitos da radiação , Raios gama/efeitos adversos , Dispositivos Lab-On-A-Chip
20.
J Cell Mol Med ; 27(23): 3839-3850, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37723905

RESUMO

Radiation-induced lung injury (RILI), divided into early radiation pneumonia (RP) and late radiation-induced pulmonary fibrosis (RIPF), is a common serious disease after clinical chest radiotherapy or nuclear accident, which seriously threatens the life safety of patients. There has been no effective prevention or treatment strategy till now. Epithelial-mesenchymal transition (EMT) is a key step in the occurrence and development of RILI. In this study, we demonstrated that emetine dihydrochloride (EDD) alleviated RILI through inhibiting EMT. We found that EDD significantly attenuated EMT-related markers, reduced Smad3 phosphorylation expression after radiation. Then, for the first time, we observed EDD alleviated lung hyperaemia and reduced collagen deposit induced by irradiation, providing protection against RILI. Finally, it was found that EDD inhibited radiation-induced EMT in lung tissues. Our study suggested that EDD alleviated RILI through inhibiting EMT by blocking Smad3 signalling pathways. In summary, our results indicated that EDD is a novel potential radioprotector for RILI.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Humanos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Emetina/farmacologia , Pulmão/patologia , Lesões por Radiação/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Transição Epitelial-Mesenquimal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...